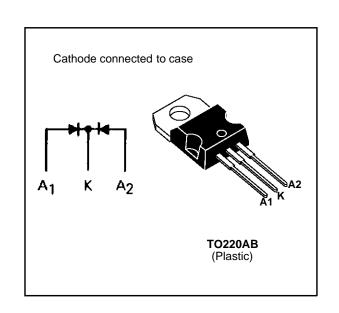

BYT 16P-200 \rightarrow 400


FAST RECOVERY RECTIFIER DIODES

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING

SUITABLE APPLICATIONS

■ The BYT 16 P can be used:

ABSOLUTE MAXIMUM RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
I _{FRM}	Repetive Peak Forward Current	t _p ≤ 10μs	130	Α
I _{F (RMS)}	RMS Forward Current		30	Α
I _{F (AV)}	Average Forward Current	$T_{case} = 100^{\circ}C$ $\delta = 0.5$	16	А
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	100	А
Р	Power Dissipation	T _{case} = 100°C	25	W
T _{stg} T _j	Storage and Junction Temperature Range		- 40 to + 150 - 40 to + 150	°C

Symbol	Parameter		BYT 16P-			
Symbol			300	300	Unit	
V_{RRM}	Repetitive Peak Reverse Voltage	200	300	400	V	
V _{RSM}	Non Repetitive Peak Reverse Voltage	220	330	440	V	

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
R _{th (j-c)}	Junction-case per leg total	3.75 2	°C/W
R _{th (c)}	Coupling	0.25	°C/W

November 1994 1/5

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol	Test Conditions			Тур.	Max.	Unit
I _R	T _j = 25°C	$V_R = V_{RRM}$			15	μΑ
	T _j = 100°C				2.5	mA
V _F	T _j = 25°C	I _F = 8A			1.5	V
	T _j = 100°C				1.4	

RECOVERY CHARACTERISTICS

Symbol		Test Conditions					Max.	Unit
t _{rr}	T _j = 25°C	I _F = 1A	$di_F/dt = -15A/\mu s$	$V_R = 30V$			75	ns
		I _F = 0.5A	I _R = 1A	I _{rr} = 0.25A			35	

TURN-OFF SWITCHING CHARACTERISTICS (Without Series Inductance)

Symbol	Test Conditions			Тур.	Max.	Unit
t _{IRM}	di _F /dt = - 32A/μs	V _{CC} = 200 V I _F = 8A			75	ns
	dir/dt = - 64A/μs	$L_p \le 0.05 \mu H$ $T_j = 100$ °C See figure 11		50		
I _{RM}	di _F /dt = - 32A/μs				2.2	Α
	di _F /dt = - 64A/μs			2.8		

TURN-OFF OVERVOLTAGE COEFFICIENT (With Series Inductance)

Symbol		Test Conditions				Max.	Unit
$C = \frac{V_{RP}}{V_{CC}}$	$T_j = 100^{\circ}C$ $di_F/dt = -8A/\mu s$	$V_{CC} = 120V$ $L_p = 9\mu H$	I _F = I _{F (AV)} See note See figure 12		3.3		

Note: Applicable to BYT 16P-400 only

To evaluate the conduction losses use the following equations:

$$V_F = 1.1 + 0.024 I_F$$

P = 1.1 x $I_{F(AV)} + 0.024 I_{F^2(RMS)}$ (1 leg)

$$P = 1.1 \text{ x } IF_{(AV)} + 0.012 IF^{2}_{(RMS)} (2 \text{ legs})$$

Figure 1. Low frequency power losses versus average current

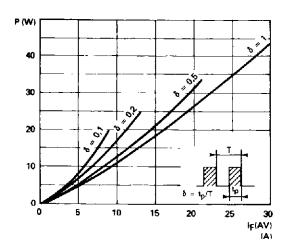


Figure 2. Peak current versus form factor

Figure 3. Non repetitive peak surge current versus overload duration

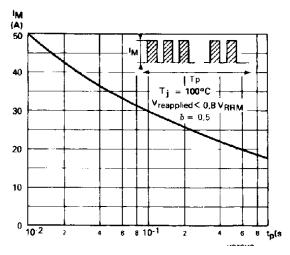


Figure 5. Voltage drop versus forward current

Figure 7. Recovery time versus di_F/d_t-

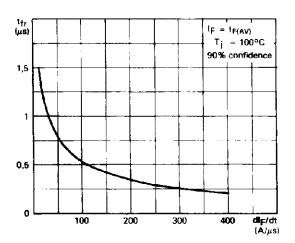


Figure 4. Thermal impedance versus pulse width

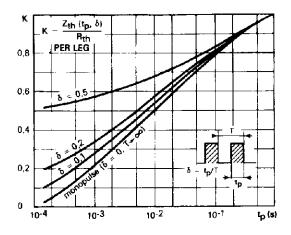


Figure 6. Recovery charge versus di_F/d_{t-}

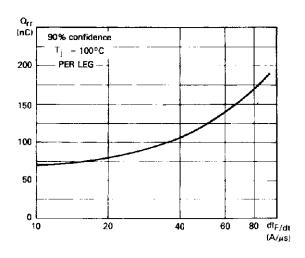


Figure 8. Peak reverse current versus di_F/d_{t-}

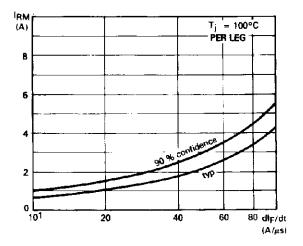


Figure 9. Peak forward voltage versus di_F/d_t-

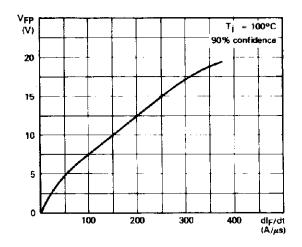


Figure 10. Dynamic parameters versus junction temperature.

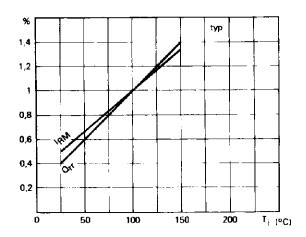


Figure 11. Turn-off switching characteristics (without series inductance).

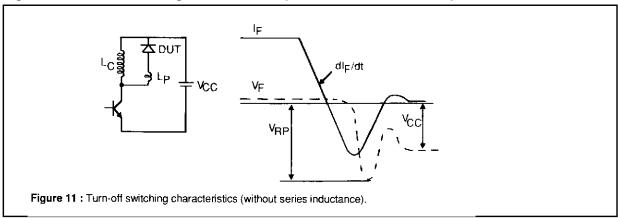
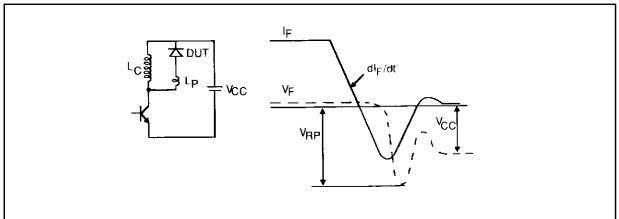
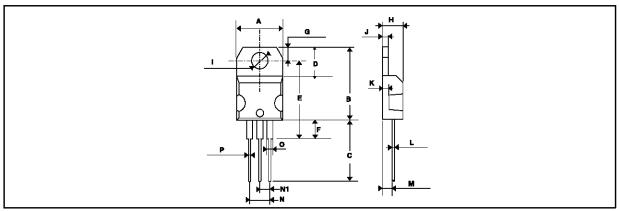




Figure 12. Turn-off switching characteristics (without series inductance)

PACKAGE MECHANICAL DATA:

TO 220 AB Plastic

	DIMENSIONS				
REF.	Millimeters		Inc	hes	
	Min.	Max.	Min.	Max.	
Α	10.0	10.4	0.393	0.409	
В	15.2	15.9	0.598	0.626	
С	13	14	0.511	0.551	
D	6.2	6.6	0.244	0.260	
E	16.4 typ.		0.645 typ.		
F	3.5	4.2	0.137	0.165	
G	2.65	2.95	0.104	0.116	
Н	4.4	4.6	0.173	0.181	
	3.75	3.85	0.147	0.151	
J	1.23	1.32	0.048	0.051	
K	1.27 typ.		0.050 typ.		
L	0.49	0.70	0.019	0.027	
M	2.4	2.72	0.094	0.107	
N	4.95	5.15	0.194	0.203	
N1	2.40	2.70	0.094	0.106	
0	1.14	1.70	0.044	0.067	
Р	0.61	0.88	0.024	0.034	

Cooling method: by conduction (method C) Marking: type number Weight: 2.47g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

